











# Gli agrofarmaci Microbiologici

- Sono agrofarmaci che hanno il principio attivo a base di un microrganismo
- Tra questi funghi, batteri, protozoi, lieviti e virus (che sono considerati microrganismi anche se in teoria non lo sono in senso stretto)
- Fino a pochi anni fa erano principalmente insetticidi (primo esempio il *Bacillus thuringiensis*) ma da qualche anno sono presenti molti nuovi principi attivi
- Gli agrofarmaci microbiologici DEVONO essere registrati come prodotti fitoiatrici



## Linee guida per l'impiego

- I BT sono una categoria per conto loro (agiscono con un tossina)
- Normalmente i microrganismi agiscono più lentamente in quanto devono produrre sostanze in situ o attivare dei processi metabolici
- Non si può contare su un effetto knock-down
- Non agire sull'incremento del dosaggio
- Più importante è la frequenza di applicazione
- Importanza del ceppo (stessa specie ma azioni diverse a secondo del ceppo)
- Disciplinari di produzione integrata e ceppi
- Attualmente sono quasi 90 i formulati regolarmente registrati (58 nel 2013)





# Indicazioni pratiche per l'impiego

- Controllare le date di scadenza e le condizioni di stoccaggio
- «Fidarsi» di rivenditori specializzati
- Controllare la compatibilità con altri agrofarmaci convenzionali e anche (micro)biologici
- Timing dell'applicazione
- Certezza del target
- Orario di applicazione
- Volumi di bagnatura e copertura (ad esempio, i Tripidi)





#### Agrofarmaci a base di microrganismi e di derivati da microrganismi impiegabili su vite



#### Fungicidi

| Microrganismo                                             | azione                         | Nome commerciale                            |
|-----------------------------------------------------------|--------------------------------|---------------------------------------------|
| Ampelomyces quisqualis M10                                | Oidio                          | AQ10                                        |
| Aureobasidium pullulans DSM 14940 e DSM 14941             | Botrite                        | Botector New                                |
| Bacillus amyloquefaciens FZB 24                           | Botrite e Oidio                | Taegro                                      |
| Bacillus amyloquefaciens MBI 600                          | Botrite                        | Serifel                                     |
| Bacillus amyloliquefaciens subsp.plantarum D 747          | Botrite e Marciume Acido       | Amylo-X                                     |
| Bacillus pumilus QST 2808                                 | Oidio                          | Sonata                                      |
| Bacillus subtilis QST 713                                 | Botrite e Marciume Acido       | Serenade ASO                                |
| Trichoderma asperellum ICC012 + Trichoderma gamsii ICC080 | Mal dell'esca                  | Remedier, Tellus WP,<br>Patriot Dry, Ecofox |
| Trichoderma asperellum ceppo TV1                          | Malattie del suolo             | Xedavir, Patriot Gold                       |
| Trichoderma atroviride I-1237                             | Mal dell'esca                  | Esquive WP                                  |
| Trichoderma harzianum T22                                 | Malattie del terreno nei vivai | Trianum                                     |
| Cerevisane (Saccharomyces cerevisiae ceppo LAS 117)       | Peronospora, Oidio, Botrite    | Romeo                                       |



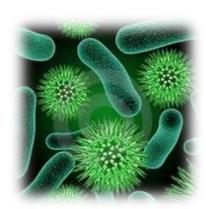
# Agrofarmaci a base di microrganismi impiegabili su vite



#### Insetticidi

| Microrganismo                         | azione          | Nome commerciale |
|---------------------------------------|-----------------|------------------|
| Bacillus thuringiensis subsp.aizawai  | tignole         | 4 formulati      |
| Bacillus thuringiensis subsp.kurstaki | tignole         | 21 formulati     |
| Beauveria bassiana ATCC74040          | Acari e Tripidi | Naturalis        |
| Metharizium anisopliae var anisopliae | Tripidi         | Met52 OD         |




# Agrofarmaci a base di microrganismi impiegabili su olivo IBMA



| Microrganismo                                             | azione                              | Nome commerciale                            |
|-----------------------------------------------------------|-------------------------------------|---------------------------------------------|
| Trichoderma asperellum ICC012 + Trichoderma gamsii ICC080 | Malattie del suolo                  | Remedier, Tellus WP, Patriot Dry,<br>Ecofox |
| Bacillus thuringiensis subsp.aizawai                      | Tignola (e <i>Hyphantria</i> cunea) | 4 formulati                                 |
| Bacillus thuringiensis subsp.kurstaki                     | Tignola (e Hyphantria cunea)        | 20 formulati                                |
| Beauveria bassiana ATCC74040                              | Mosca                               | Naturalis                                   |



# Vantaggi dell'uso dei microrganismi nella difesa fitoiatrica



APPLICABILE CON LE NORMALI MACCHINE IRRORATRICI

SELETTIVI PER LA COLTURA E AUSILIARI

SPECIFICA MODALITA'
DI AZIONE

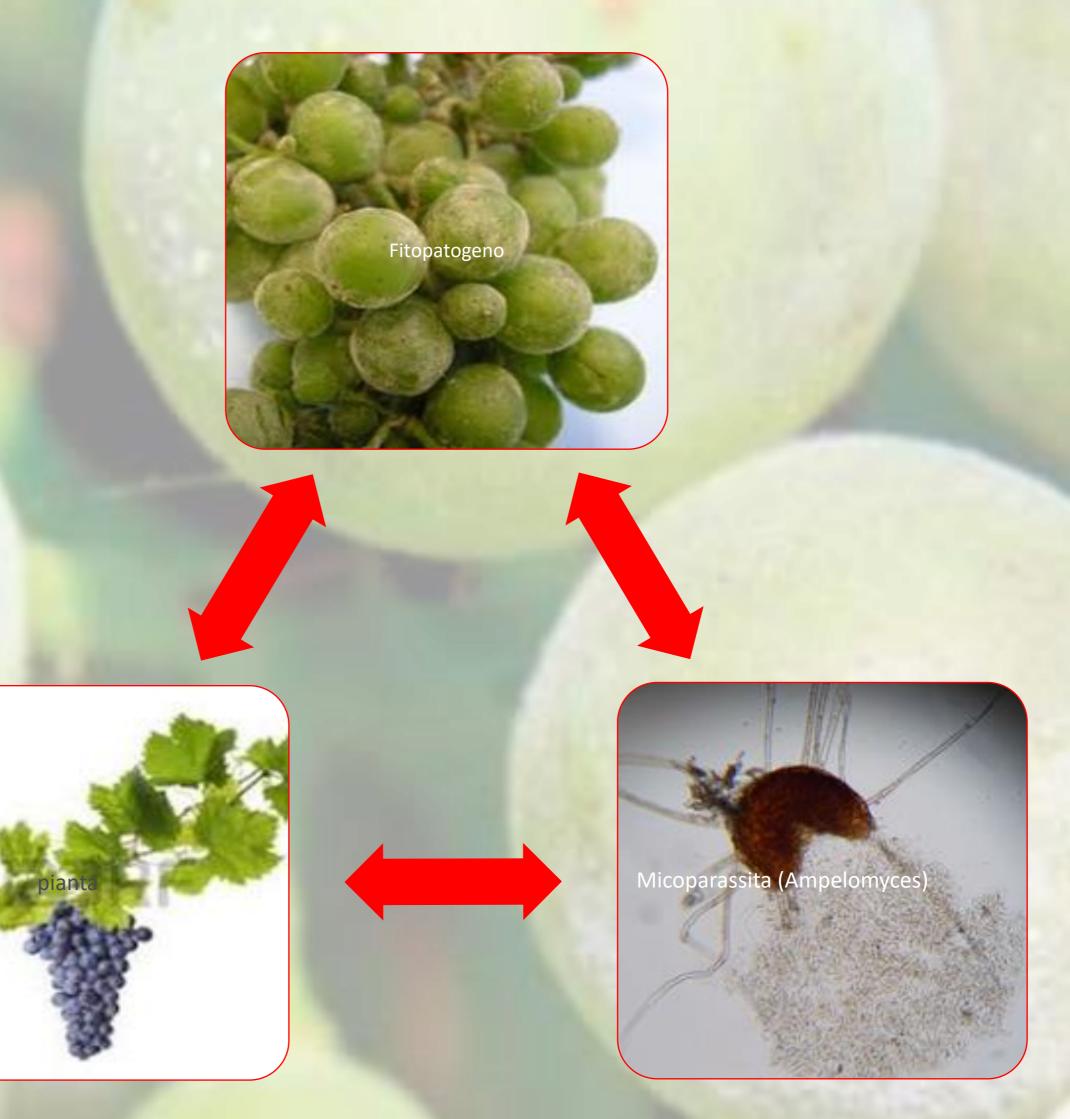
BASSISSIMO RISCHIO DI RESISTENZA

TEMPO DI CARENZA BREVE O NULLO, NESSUN LMR

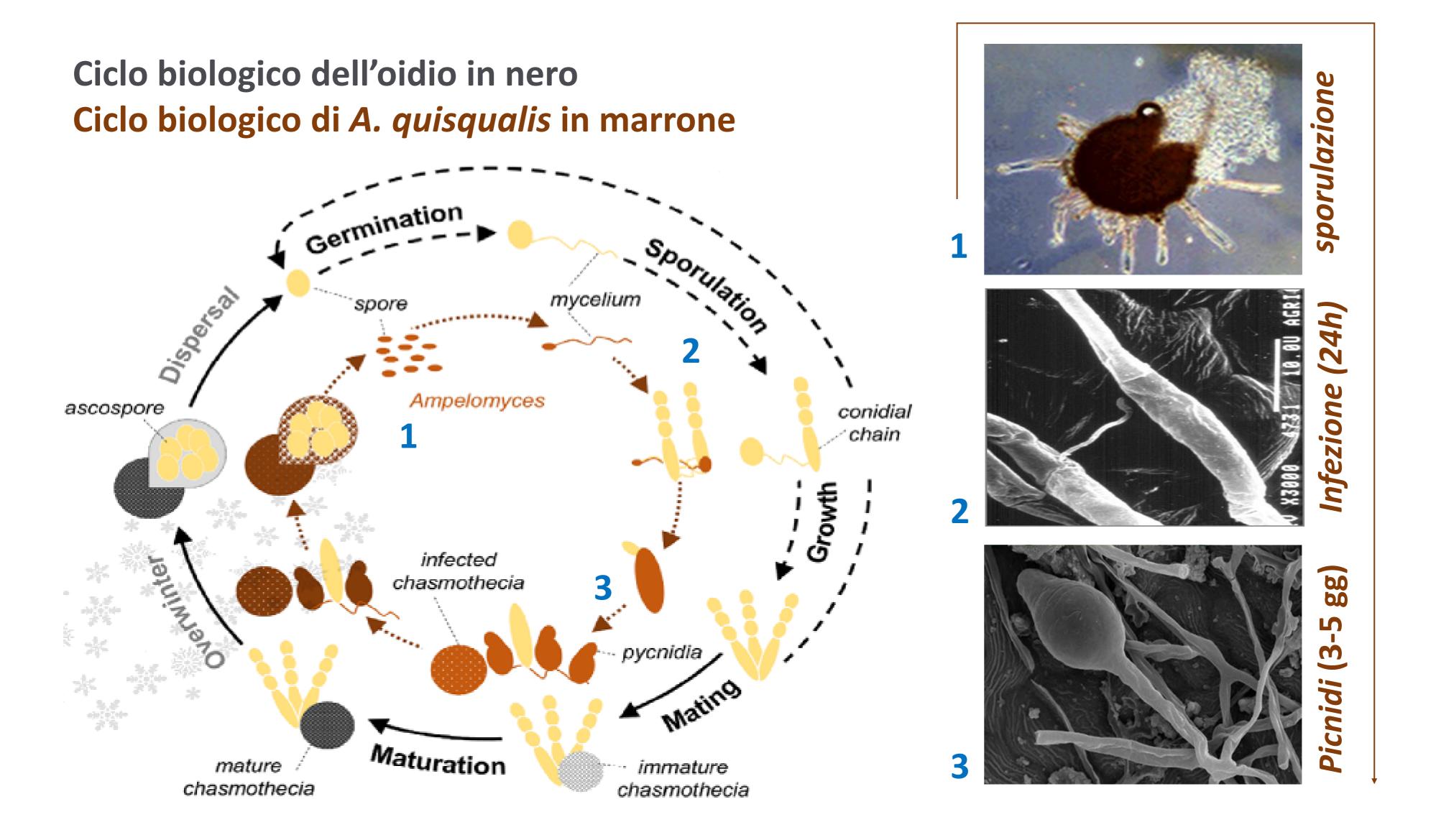
SICURI PER UOMO E AMBENTE

(QUELLI REGISTRATI)

# Partire per tempo

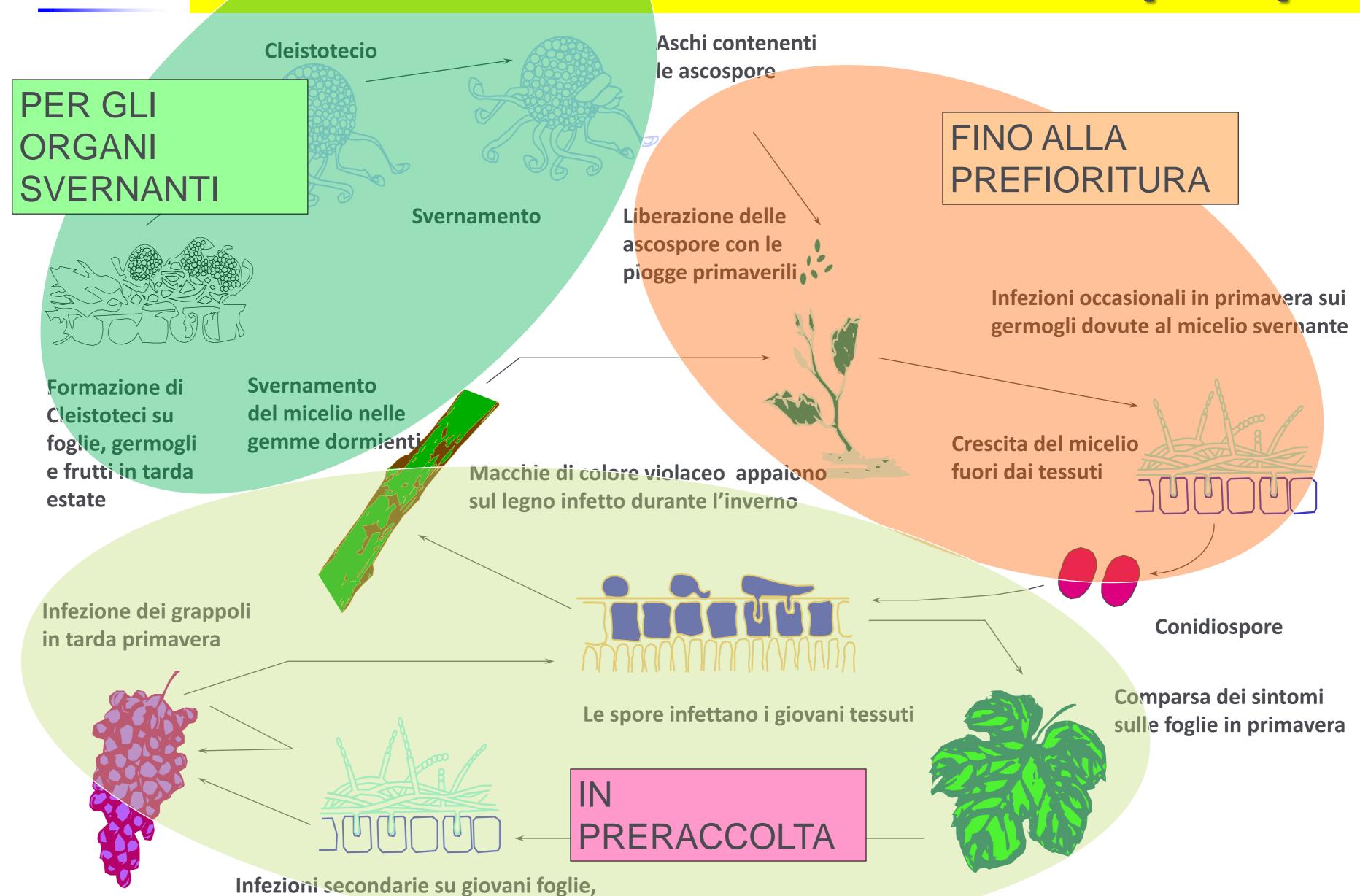

### una nuova modalità di difesa

#### Micoparassiti:


funghi che parassitizzano altri funghi; possono assorbire nutrienti dai loro ospiti fungini attraverso austori (estremità ifali) o invadere il micelio dell'ospite, nutrendosi internamente e crescendo da cellula a cellula in ife, spore, corpi fruttiferi ed alter strutture.

(Jeffries e Young, 1994).

# Interazione tri-trofica:




#### CICLO BIOLOGICO DI AMPELOMYCES QUISQUALIS



Fonte: Elina Numminen et al, 2019

# FINESTRE APPLICATIVE DI A.quisqualis



germogli e grappoli

## A.quisqualis – risultati a supporto

| Strategia      | Autunno<br>(2 interventi) | Inverno<br>(1 intervento) | Primavera<br>(2-5 interventi) |
|----------------|---------------------------|---------------------------|-------------------------------|
| 1              | AQ10 pre + post           | -                         | Zolfo                         |
| 2              | Strategia chimica         | Strategia chimica         | Strategia chimica             |
| Testimone n.t. | -                         | -                         | -                             |

#### Gravità di attacco (%) su grappoli (periodo rilievo: pre-chiusura grappolo)

| Strategia      | Conventello<br>2009/10 | Castel S. Pietro 2009/10 | Conventello<br>2010/11 | Castel S. Pietro 2010/11 |
|----------------|------------------------|--------------------------|------------------------|--------------------------|
| 1              | 0.04 b                 | 4.0 b                    | 0.00 b                 | 0.03 b                   |
| 2              | 0.01 b                 | 0.7 b                    | 0.00 b                 | 0.00 b                   |
| Testimone n.t. | 1.49 a                 | 50.9 a                   | 3.80 a                 | 4.33 a                   |

# CONTATTACI

#### **IBMA ITALIA**

**International Biocontrol Manufacturers** 

Association

**WWW.IBMAITALIA.IT** 





#### PRESIDENTE

Giacomo De Maio direzione.ibmaitalia@ibma-global.org



#### **SEGRETERIA**

Francesca Antonazzo
amministrazione.ibmaitalia@ibma-global.org